
J. Fluid Mech. (1998), vol. 360, pp. 213–228. Printed in the United Kingdom

c© 1998 Cambridge University Press

213

Surface-wave damping in a brimful circular
cylinder

By C A R L O S M A R T E L, J O S É A. N I C O L Á S
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Plaza Cardenal Cisneros, 3, 28040 Madrid, Spain

(Received 14 July 1997 and in revised form 26 November 1997)

The natural frequencies and damping rates of surface waves in a circular cylinder
with pinned-end boundary conditions are calculated in terms of the gravitational
Reynolds and Bond numbers, C−1 and B, and the slenderness of the cylinder Λ, in
the limit C → 0. We consider higher-order approximations that include the effect
of viscous dissipation in the Stokes boundary layers and the bulk. A comparison
with clean-surface experiments by Henderson & Miles (1994) shows a satifactory
agreement except for the first axisymmetric mode, which exhibits a 26% discrepancy.
The much larger dramatic discrepancy of former theoretical predictions is hereby
improved and explained.

1. Introduction
A precise knowledge of the linear damping rate of surface waves is a prerequisite

to constructing a safe and consistent weakly nonlinear theory for the evolution of
the waves, which in turn has not been completed to a satisfactory degree in vibrated
finite containers (Miles & Henderson 1990).

The theoretical analysis of linear damping was undertaken by Stokes (1851), who
considered an infinite horizontal liquid layer over a flat plate. More recently, several
attempts to get precise theoretical predictions in finite containers essentially failed after
comparison with experiments. The discrepancy was first assumed to be due to both
capillary hysteresis (Benjamin & Ursell 1954) and surface contamination (Van Dorn
1966, although surfactants had been recognized as a source of damping much earlier).
That led to a subsequent analysis of both effects and to valuable phenomenological
boundary conditions to account for them: see Miles (1967) and Henderson & Miles
(1994) for old and new references and for a further discussion on these topics. But
more recent experimental measurements in a quite clean brimful circular cylinder with
a sharp edge (thus the contact line was essentially fixed and capillary hysteresis was
essentially absent) showed again a poor agreement with current theoretical results;
an interesting observation was that the discrepancy significantly increased for higher
modes. Let us point out here that the difficulty appears also for other shapes of the
container (e.g. for rectangular containers, see Henderson & Miles 1990 and Jiang
et al. 1996) and for related fluid configurations such as liquid bridges, where the
difficulty was solved by Higuera, Nicolás & Vega (1994) (see also Higuera & Nicolás
1997).

The main object of this paper is to precisely calculate the linear damping rate
in a finite container. We shall ignore the effects of capillary hysteresis (by fixing
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the contact line) and surface contamination, and we shall restrict ourselves to the
circular cylinder geometry. The analysis of other cylindrical geometries is similar and
is expected to yield similarly good results provided that the pinned-end boundary
condition is maintained; but of course this conjecture must be checked, specially for
non-smooth cross-sections of the cylindrical container. Let us mention here that for
the moving contact line case and rectangular containers there is also a discrepancy
between calculated and measured values (Henderson & Miles 1990), which could
be due to effects not considered in this paper. We shall consider the limit when the
gravitational Reynolds number C−1 = (gR3)1/2/ν (with g = gravitational acceleration,
R = radius of the cylinder and ν = kinematic viscosity) is large, as happens to be the
case except for quite viscous liquids and/or quite small containers. The gravitational
Bond number B = ρgR2/σ (with ρ = density and σ = surface tension) and the
slenderness of the cylinder Λ = d/R (with d = depth of the cylinder) are treated as
O(1) parameters. In this limit, the non-dimensional damping rate and frequency are

damping rate = C1/2ω1 + Cω2 + O(C3/2), frequency = ω0 − C1/2ω1 + O(C3/2).
(1.1)

Here the O(C1/2) term comes from viscous dissipation in the (oscillatory) Stokes
boundary layers near the solid wall and the bottom of the container, and the O(C)
term comes from (a) viscous dissipation in the bulk and (b) a first correction of
viscous dissipation in the Stokes boundary layers. The leading O(C3/2) neglected term
essentially comes from viscous dissipation in the oscillatory boundary layer near
the free surface. Now, the main point is that the O(C) term has been systematically
neglected because it involves a higher-order effect. This is obviously a good assumption
from the asymptotic point of view, provided that C is sufficiently small. Unfortunately
C is not ‘sufficiently small’ in practice, but it is just small (of the order of 10−4 for
water if R is of the order of a few cm) and the O(C) term can have a non-negligible
effect, as already pointed out by Case & Parkinson (1957) who considered the simpler
case of free contact line without capillary hysteresis. In fact, as we shall see, ω2/ω1 is
frequently fairly large, even for the first mode, and the assumption of neglecting the
O(C) effect is good only for extremely small values of C . Let us point out here that
ω2/ω1 increases for higher-order modes, as will be checked numerically and explained
by asymptotic arguments below. Our two-term approximation of the damping rate
shows a good agreement with experiments, as we shall see in § 3. Notice that there
is no correction to the non-dimensional frequency at order C; this explains why
current approximations for the frequency have been seen to be quite good. Let us
also anticipate here that if the effect (b) above is neglected when calculating the O(C)
correction then the expression for ω2 is much simpler and frequently gives reasonably
good results.

The paper is organized as follows. The coefficients, ω0, ω1 and ω2, of the asymptotic
approximations (1.1) are calculated in § 2, where the dependence of these coefficients
on the mode, the slenderness and the Bond number are also briefly analysed. A
comparison with the experimental results by Henderson & Miles (1994) and some
concluding remarks are given in § 3 and § 4.

2. The asymptotic calculation of the damping rate and frequency
We consider a brimful circular cylinder of radius R and depth d, and use R and the

gravitational time (R/g)1/2 to non-dimensionalize length and time in the governing
equations and boundary conditions. We use cylindrical coordinates r, θ and z with the
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origin at the static position of the free surface in the axis of symmetry. If in addition
we linearize around the static state and make a normal-mode decomposition of the
velocity components, u, v and w, the pressure p and the shape of the free surface,
z = f(r, θ, t), as

(u, v, w, p, f) = (U(r, z), iV (r, z),W (r, z), P (r, z), F(r)) exp(Ωt+ imθ),

then the following linear eigenvalue problem results:

Ur + r−1U − mr−1V +Wz = 0, (2.1)

ΩU + Pr = C[Urr + r−1Ur − (m2 + 1)r−2U +Uzz + 2mr−2V ], (2.2)

ΩV + mr−1P = C[Vrr + r−1Vr − (m2 + 1)r−2V + Vzz + 2mr−2U], (2.3)

ΩW + Pz = C(Wrr + r−1Wr − m2r−2W +Wzz), (2.4)

|U|+ |V |+ |W |+ |P | = bounded as r → 0, (2.5)

U = V = W = 0 at r = 1 and at z = −Λ, (2.6)

W − ΩF = Vz + mr−1W = Uz +Wr = 0

P − F + B−1(F ′′ + r−1F ′ − m2r−2F) = 2CWz

}
at z = 0, (2.7)

F(1) = 0, (2.8a)∫ 1

0

F(r)rdr = 0 if m = 0, (2.8b)

Equations (2.1)–(2.4) come from the continuity and momentum equations, and
the boundary conditions (2.6)–(2.8a) result from imposing non-slipping at the solid
boundaries, equilibrium of tangential and normal stresses at the free surface and
attachment of the contact line at the upper edge of the container respectively.
Condition (2.5) is readily seen to be equivalent to imposing smoothness of the
pressure and velocity fields (and the shape of the interface) at the axis of symmetry,
and the volume-conservation equation (2.8b) is recalled for convenience; the latter is
not really needed if Ω 6= 0 because it is a consequence of (2.1), (2.5)–(2.6) and the
first condition (2.7), as is readily seen. The problem depends only on the gravitational
Reynolds number, C−1 = (gR3)1/2/ν, the slenderness of the container, Λ = d/R, and
the gravitational Bond number, B = ρgR2/σ.

For convenience we consider the linearized Reynolds–Orr energy equation (Drazin
& Reid 1981), which is obtained upon multiplication of (2.2)–(2.4) by rŪ, rV̄ and rW̄
respectively, integration in 0 < r < 1, −Λ < z < 0, integration by parts, substitution
of (2.1) and (2.5)–(2.7) and extraction of the real part, to obtain

(ReΩ)J1 = −J2, (2.9)

where

J1 =

∫ 0

−Λ

∫ 1

0

(
|U|2 + |V |2 + |W |2

)
rdr dz +

∫ 1

0

[
(r + m2/Br)|F |2 + r|F ′|2/B

]
dr,

J2 =

∫ 0

−Λ

∫ 1

0

(
|Ur|2 + |Uz|2 + |Vr|2 + |Vz|2 + |Wr|2 + |Wz|2

)
rdr dz,

+

∫ 0

−Λ

∫ 1

0

[(1 + m2)(|U|2 + |V |2) + m2|W |2 − 2m(UV̄ + ŪV )]r−1dr dz

+ C

∫ 1

0

(W̄Wz +WW̄z)z=0rdr.
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Equation (2.9) is a balance between the damping rate of the mechanical energy of the
system, −(ReΩ)J1, and the viscous dissipation rate, J2.

We shall consider the limit

C → 0,

without making at this stage any assumption about Λ and B (although Λ and B−1

cannot be too small for the analysis below to be valid, as it will be explained at the
end of this section).

Notice that (2.1)–(2.8) exhibit two kinds of eigenvalues, which behave as |Ω| ∼ C
and |Ω| ∼ 1 respectively. As |Ω| ∼ C we obtain hydrodynamic modes that are usually
ignored in weakly nonlinear analyses, even though their existence is well-known (e.g.
Lamb 1932) and can be seen to be responsible for the viscous secondary streaming
flow associated with surface waves; see Nicolás & Vega (1996) and Nicolás, Rivas
& Vega (1997, 1998) for the analysis of these flows in related fluid configurations.
Hydrodynamic modes are calculated by seeking solutions of (2.1)–(2.8) of the form

Ω = CΩ0 + O(C2), (U,V ,W ) = (U0, V0,W0) + O(C), (P , F) = C(P0, F0) + O(C2),

to obtain, at leading order, a purely hydrodynamic linear problem (that is omitted
for the sake of brevity), without any surface deformation. Thus, these (overdamped)
modes can be ignored when considering the linear evolution of the interface associated
with the other kind of modes, which are considered now.

As |Ω| ∼ 1 we obtain surface modes, which are perturbations of the purely inviscid
modes and involve significant deformations of the free surface. Viscous effects are
weak in the bulk, except in the oscillatory boundary layers, near the solid walls and
the free surface, which have a thickness of the order of C1/2 (such that inertia and
viscous effects are comparable in momentum convervation equations). The eigenvalue
Ω, the free-surface deformation, and the pressure and velocity components in the bulk
can be expanded as

Ω = Ω0 + C1/2Ω1 + CΩ2 + · · · , (2.10)

U = U0 + C1/2U1 + CU2 + · · · , V = · · · , W = · · · , P = · · · , F = · · · , (2.11)

where the expansions for V , W , P and F are similar to that for U.
The coefficients of the expansions (2.10)–(2.11) may be calculated in a straightfor-

ward manner, as follows. We would substitute (2.10)–(2.11) into (2.1)–(2.5), to obtain
a recursive system of equations in the bulk and boundary conditions at the axis of
symmetry. The remaining boundary conditions would be obtained from matching
conditions with the solution in the oscillatory boundary layers near the solid walls
and the free surface. Finally, Ω0 would be obtained by requiring the O(1) problem
to possess a non-trivial solution, and Ω1 and Ω2 would be obtained from solvability
conditions of the O(C1/2) and O(C) problems. But then we should deal with two main
difficulties. First, we would need to consider three terms in the expansions for the
solutions in the bulk and in the boundary layers, and this would lead to fairly involved
calculations. Secondly, the solution in the bulk exhibits a singularity at the upper
edge of the lateral walls (i.e. at r = 1, z = 0) that becomes stronger and stronger as
we proceed with higher-order terms in the perturbation process; that singularity must
be handled carefully at order C to avoid wrong results when applying the solvability
condition. That difficulty comes from the fact that the solvability condition involves
an integration-by-parts step that fails at O(C) due to the above-mentioned singularity.
The difficulty was first encountered by Ursell (1952) and is always present at contact
lines. A first solution was given by Mei & Liu (1973) upon a careful analysis of a
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thin viscous region near the contact line. Higuera et al. (1994) solved the difficulty
by removing the singularity from the O(C) problem before applying the solvability
condition, and Nicolás & Vega (1996), in a more subtle weakly-nonlinear setting,
introduced an integral solvability condition that also solved the first difficulty. Here,
we shall use that integral condition, which may be seen as either (a) a mathematical
generalization of the Reynolds–Orr energy equation (2.9) or (b) the result of adding
up the solvability conditions at all asymptotic orders (C1/2, C, . . . ). Since that condi-
tion is directly obtained from both the original unperturbed problem (2.1)–(2.8) and
the O(1) problem (see (2.12)–(2.15) below), which exhibit a quite weak singularity
near the contact line, the integration-by-parts step (which is also needed to obtain the
condition) does not fail. Notice that both difficulties would be also avoided if using
the energy equation, as Henderson & Miles (1994) did, but then only the real part of
Ω would be obtained and we would not ensure that the O(C) correction in (2.10) is
real.

We shall only need the first two terms in the expansions (2.11), which are given by

U0r + r−1U0 − mr−1V0 +W0z =Ω0U0 + P0r=Ω0V0 + mr−1P0 = Ω0W0 + P0z =0, (2.12)

|U0|+ |V0|+ |W0| bounded at r = 0, U0 = 0 at r = 1, W0 = 0 at z = −Λ, (2.13)

W0 − Ω0F0 = P0 − F0 + B−1(F ′′0 + r−1F ′0 − m2r−2F0) = 0 at z = 0, (2.14)

F0(1) = 0, (2.15a)∫ 1

0

F0(r)rdr = 0 if m = 0, (2.15b)

U1r + r−1U1 − mr−1V1 +W1z = 0, (2.16)

Ω0U1 + P1r + Ω1U0 = Ω0V1 + mr−1P1 + Ω1V0 = Ω0W1 + P1z + Ω1W0 = 0, (2.17)

|U1|+ |V1|+ |W1| bounded at r = 0, U1 = U0r/(Ω0)
1/2 at r = 1, (2.18)

W1 = −W0z/(Ω0)
1/2 at z = −Λ, (2.19)

W1 − Ω0F1 − Ω1F0 = P1 − F1 + B−1(F ′′1 + r−1F ′1 − m2r−2F1) = 0 at z = 0, (2.20)

F1(1) = 0, (2.21a)∫ 1

0

F1(r)rdr = 0 if m = 0, (2.21b)

The boundary conditions at r = 1, z = −Λ and z = 0, in (2.13)–(2.14) and (2.18)–
(2.20), are obtained from matching conditions with the Stokes boundary layers near
the solid walls and the boundary layer near the interface; the solution of (2.1)–(2.8)
in these boundary layers is given in the Appendix ((A 1)–(A 12)), where the linear
eigenvalue problem (2.12)–(2.15) is also solved in a semi-analytical form.

Now, the integral solvability condition is obtained as follows. Multiply (2.2)–(2.4)
by rU0, rV0 and rW0 respectively, and the last three equations in (2.12) by −rU, −rV
and −rW respectively, add, integrate in 0 < r < 1 and −Λ < z < 0, integrate by
parts, replace the continuity equations in (2.1) and (2.12), and the boundary conditions
(2.5)–(2.8) and (2.13)–(2.15), and integrate by parts again to obtain

(Ω − Ω0)I1 = −I2 − I3, (2.22)
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where

I1 =−
∫ 0

−Λ

∫ 1

0

(U0U + V0V +W0W )rdr dz +

∫ 1

0

[
(r + m2/Br)F0F + rF ′0F

′/B
]

dr

=− (1 + Ω/Ω0)

∫ 1

0

(FP0)z=0rdr, (2.23)

I2 =− C
∫ 0

−Λ

∫ 1

0

(U0rUr +U0zUz + V0rVr + V0zVz +W0rWr +W0zWz)rdr dz

− C
∫ 0

−Λ

∫ 1

0

[
(1 + m2)(U0U + V0V ) + m2W0W − 2m(U0V +UV0)

]
r−1dr dz,

− C
∫ 1

0

(W0Wz +WW0z)z=0 rdr

=− C
∫ 1

0

(W0Wz + 3WW0z)z=0rdr, (2.24)

I3 =C

∫ 0

−Λ
(V0Vr +W0Wr)r=1dz − C

∫ 1

0

r(U0Uz + V0Vz)z=−Λdr. (2.25)

The second expression for I1 in (2.23) is readily obtained upon multiplication
of the last three (momentum) equations in (2.12) by rU, rV and rW respectively,
integration in 0 < r < 1, −Λ < z < 0, integration by parts and application of the
continuity equation in (2.12) and the boundary conditions (2.13)–(2.15a). In order to
obtain the second expression for I2 first notice that since the inviscid vector field v0 =

(U0er+iV0eθ+W0ez)e
Ωt+imθ is irrotational, its Laplacian, ∇2v0 = ∇(∇ ·v0)−∇×(∇×v0)

vanishes and thus ∆U0− (m2 +1)r−2U0 +2mr−2V0 = ∆V0− (m2 +1)r−2V0 +2mr−2U0 =
∆W0 − m2r−2W0 = 0, where ∆ϕ = ϕrr + r−1ϕr + ϕzz . Then we only need to multiply
these three equations by rU, rV and rW , integrate, integrate by parts and take into
account the boundary conditions (2.13)–(2.15).

In order to get some insight into the physical meaning of (2.22), a comparison with
the mechanical energy equation (2.9) is now made. Since iU0, iV0, iW0, F0 and P0

are real, I1 and I2 are also real and coincide with J1 and J2 in first approximation,
provided that the contribution from the boundary layers is ignored. Thus I1 and I2

give respectively the mechanical energy and the rate of viscous dissipation in the bulk
in first approximation. The latter is given by

−4C

∫ 1

0

W0(1, z)W0z(1, z)rdr + C

∫ 0

−Λ
V0(1, z)

2dz, (2.26)

as readily obtained by first ignoring the contribution of the boundary layers and
replacing (U,V ,W ) by (U0, V0,W0) in the first expression for I2 and then proceeding
as in the derivation of the second expression for I2 above. Thus (2.26) gives the rate
of viscous dissipation in the bulk in first approximation, and the difference between
that expression and I2 gives an O(C) part of the viscous dissipation in the Stokes
boundary layers; the remaining O(C1/2) + O(C) parts are given by I3.

If the expansion (2.10) and the solutions in the boundary layers (A 1)–(A 3), (A 5)–
(A 7) and (A 9)–(A 11) are substituted into (2.22) the following expressions for Ω1 and
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Ω2 are obtained:

2Ω
3/2
0 Ω1

∫ 1

0

F0(r)P0(r, 0)rdr =

∫ 0

−Λ
(m2P 2

0 + P 2
0z)r=1dz

+

∫ 1

0

(rP 2
0r + m2P 2

0 /r)z=−Λdr, (2.27)

(Ω2 + Ω2
1/Ω0)

∫ 1

0

F0(r)P0(r, 0)rdr = −
∫ 1

0

[
2(rF ′0P0r + m2r−1F0P0) + Ω1rF1P0

]
z=0

dr

+

∫ 0

−Λ

[
2(Ω0)

1/2(m2P0P1 + P0zP1z) + m2P 2
0 − P 2

0z

]
r=1

dz/(4Ω2
0)

+

∫ 1

0

(m2r−1P0P1 + rP0rP1r)z=−Λdr/(2Ω
3/2
0 ). (2.28)

In order to obtain (2.27)–(2.28), it is convenient to use the second expressions for I1

and I2 and to notice that (the boundary of the domain is inside the boundary layers
and thus) the velocity components U, V and W in the line integrals must be taken
from the solution in (A 1)–(A 12). Notice that we are ignoring two corner tori near
the edges of the bottom of the container and the free surface (r = 1, z = −Λ and 0),
with a characteristic size of the order of C1/2; the contribution of these tori (where
the gradients of U0, V0, W0, U, V and W are O(logC)-quantities) is readily seen to
provide O(C logC)2-terms in the expansion for Ω.

Now, the coefficient Ω1 is readily calculated when the expressions for F0 and
P0 in (A 16)–(A 17) are substituted into (2.27). That expression coincides (up to a
change in notation) with its counterpart already calculated by Henderson & Miles
(1994), as readily seen when using the semi-analytical expressions for the integrals
given in the Appendix ((A 22)–(A 25)). Notice that since F0 and P0 are real and Ω0

is purely imaginary, (2.27) shows that Ω1 = −(1 + i)ω1, with ω1 real and positive
(as is well known). In order to apply (2.28) to calculate Ω2 we need to solve the
non-homogeneous singular linear problem (2.16)–(2.21), which has a solution if and
only if the forcing terms satisfy a solvability condition; that condition is readily seen
to coincide with (2.27) (and thus, it is automatically satisfied when Ω1 is calculated
as above). A semi-analytical solution to (2.16)–(2.21) is given in the Appendix, in
(A 18)–(A 21). Notice that F1/(Ω0)

1/2 and P1/(Ω0)
1/2 are real and thus (2.28) shows

that Ω2 is real, as anticipated above.
A simpler ‘approximate’ expression for Ω2 is obtained when ignoring the O(C1/2)

correction of I1 and the O(C) correction of I3 and approximating I2 by (2.26), to
obtain

Ω̃2

∫ 1

0

F0(r)P0(r, 0)rdr = −2

∫ 1

0

(rF ′0P0r + m2r−1F0P0)z=0dr

−m2

∫ 0

−Λ
P0(1, z)

2dz/2Ω2
0 . (2.29a)

Notice that the approximation Ω ' Ω0 + C1/2Ω1 + CΩ̃2 essentially corresponds to
considering only the leading-order approximations of the mechanical energy and the
rate of viscous dissipation in the bulk and in the Stokes boundary layers. Still, a
comparison of (2.29a) and (2.27) shows that if the last term on the right-hand side
of (2.29a) is ignored then the error in our approximation above is not larger than

|Ω1|C/|Ω1/2
0 |; thus the term can be safely ignored except perhaps for small values of
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|Ω0| (i.e. for small values of Λ, as explained below). If that term is ignored, then Ω̃2

is approximated by

Ω̃∗2

∫ 1

0

F0(r)P0(r, 0)rdr = −2

∫ 1

0

(rF ′0P0r + m2r−1F0P0)z=0dr. (2.29b)

Notice that the approximation Ω ∼ Ω0 + C1/2Ω1 + CΩ̃∗2 corresponds to considering
only the leading-order approximations of I1, I2 and I3 when applying (2.22). These
two approximations will be checked in § 3 where we shall see that they are frequently
(but not always) reasonably good. The integrals appearing in (2.29a) and (2.29b)
are calculated in closed-form in the Appendix ((A 22)–(A 23), (A 26)). For the sake
of brevity we omit the associated (quite involved) closed-form expressions for the
remaining integrals (involving F1 and P1) appearing on the right-hand side of (2.28).

Let us now consider the limiting values of the slenderness, the eigenfrequency and
the Bond number:

(a) A straightforward asymptotic analysis shows that, for a fixed mode,

|Ω0|/Λ1/2 → c0, |Ω1|Λ3/4 → c1 and |Ω2|Λ2 → c2 as Λ→ 0, (2.30)

where c0, c1 and c2 are non-zero. Our asymptotic analysis above requires the thickness
of the oscillatory boundary layers, (C/|Ω0|)1/2, to be small compared to the slenderness
Λ, or, according to (2.30),

Λ � C2/5. (2.31)

If that condition does not hold then viscous effects cannot be ignored in the bulk;
but, since Λ is small, a lubrication approximation can be used that greatly simplifies
the original three-dimensional problem (2.1)–(2.8) (to a limiting, two-dimensional
problem). Notice that if

C2/5 � Λ � 1, (2.32)

then C|Ω2| ∼ C/Λ2 � C1/2/Λ3/4 ∼ C1/2|Ω1|. This suggests that if (2.31) holds but Λ is
small then the leading-order approximation of the damping rate should provide good
results for the first few modes (but not for higher-order modes, according to remark
(c) below); but even in this case, it is advisable to calculate the O(C) correction to
obtain a better approximation.

(b) As Λ → ∞, Ω0, Ω1 and Ω2 converge to their limiting values that are ob-
tained upon substitution of tanh(λnΛ) by 1 in (A 15′) and (A 20), and substitution of
cosh[λn(z + Λ)]/ cosh(λnΛ) by exp(λnz) in (A 17) and (A 19). Since that convergence
is exponential, the limit gives quite good results for moderately large values of Λ, as
will be checked in § 3.

(c) For higher-order modes |Ω0| → ∞ and the eigenfunctions are surface waves
with a large wavenumber k, such that |Ω0|2 ∼ k + B−1k3, and decay exponentially as
kz → −∞. The validity of the analysis above requires the thickness of the boundary
layer attached to the interface, (C/|Ω0|)1/2, to be small compared to the thickness of
the inviscid layer affected by the waves, k−1, that is

C � |Ω0|/k2 ∼ [k−3 + (Bk)−1]1/2. (2.33)

If that condition does not hold then viscous effects must be considered everywhere in
the thin layer affected by the waves. If (2.33) holds but |Ω0| is large then the viscous
dissipation in the Stokes boundary layer attached to the bottom of the container is
exponentially small; the viscous dissipation in the boundary layer attached to the
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(m, q) ω0 ω1 ω2 ω̃2 ω̃∗2 ω C1/2ω1 × 103 δ × 103 δ̃ × 103 δ̃∗ × 103

(1,0) 1.561 0.494 13.29 11.30 11.48 1.557 4.11 5.04 4.89 4.91
(2,0) 2.120 0.636 32.04 28.75 29.02 2.115 5.30 7.52 7.29 7.31
(0,1) 2.287 0.187 38.21 36.93 36.93 2.285 1.56 4.21 4.12 4.12
(3,0) 2.614 0.734 56.64 52.15 52.47 2.608 6.11 10.05 9.73 9.77
(1,1) 2.868 0.280 70.74 69.11 69.14 2.866 2.33 7.24 7.13 7.13
(4,0) 3.099 0.812 86.73 81.11 81.45 3.092 6.76 12.78 12.39 12.42

Table 1. The coefficients ω0, ω1, ω2 , ω̃2 and ω̃∗2 and the approximations of the non-dimensional
eigenfrequency and damping rate of the (m, q) mode (with m nodal diameters and q nodal circles),
for Λ = 1.374, B = 103.8 and C = 6.94× 10−5.

lateral wall and in the bulk are readily seen to be proportional to k−1(|Ω0|C)1/2 and
to kC respectively, and thus

C1/2|Ω1|/(C|Ω2|) ∼ [|Ω0|/(Ck4)]1/2 � k−1 � 1. (2.34)

Then the O(C) correction of the damping rate is much higher than the O(C1/2) leading
term as k (or |Ω0|) increases, for a fixed value of C . This will be numerically checked in
§ 3 and explains why the discrepancy with experiments of the O(C1/2) approximation
by Henderson & Miles (1994) increased for higher-order modes.

(d) As B →∞ capillary effects are confined to a O(B−1/2) capillary boundary layer
near the edge of the interface. The validity of the analysis above requires the thickness
of this layer to be large compared to the thickness of the viscous boundary layers,
(C/|Ω0|)1/2, that is

BC � |Ω0|. (2.35)

If (2.35) does not hold then capillary and viscous effects must be considered simul-
taneously in a O

(
(C/|Ω0|)1/2

)
corner torus near the edge of the free surface. Notice

that when considering the problem as nearly inviscid in the capillary boundary layer
(as we did above) the underlying small parameter is BC/|Ω0|, which is much larger
than C if B is large.

3. Comparison with experiments
According to the results in §2, the dimensional eigenfrequency ω and damping rate

δ are given by

ω = ω0 − C1/2ω1 + O(C3/2), δ = C1/2ω1 + Cω2 + O(C3/2), (3.1)

where

ω0 = Ω0/i, ω1 = −Ω1/(1 + i) and ω2 = −Ω2. (3.2)

Here Ω0, Ω1 and Ω2 are as calculated from the characteristic equation (A 13) and the
expressions (2.27) and (2.28), with F0, P0, F1 and P1 as given by (A 16)–(A 19). In
addition, we suggested the following approximations for the damping rate:

δ̃ = C1/2ω1 + Cω̃2 with ω̃2 = −Ω̃2, (3.3a)

δ̃∗ = C1/2ω1 + Cω̃∗2 with ω̃∗2 = −Ω̃∗2 , (3.3b)

where Ω̃2 and Ω̃∗2 are given by (2.29a, b). Those approximations are much simpler
because they do not require calculating P1 and F1.

For illustration, in table 1 we consider several modes for Λ = 1.372, B = 103.8
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Figure 1. Re-scaled non-dimensional components of the velocity, U = Ω0U0, V = Ω0V0 and
W = Ω0W0, at the edge of the Stokes boundary layers ( ) and in the bulk ( ), for the
(1, 0) and (0, 1) modes.

and C = 6.94×10−5 (precisely the values corresponding to the experiment considered
below). Several remarks about this table are in order:

(a) If the actual slenderness is replaced by Λ = ∞ then the numerical results in
table 1 essentially stand, as anticipated at the end of § 2.

(b) The ratio ω2/ω1 is fairly large as anticipated above. According to our discussion
in § 2, the underlying reason must be that the Stokes boundary layers attached to the
solid walls are quite weak. This is illustrated in figure 1, where we plot the tangential
velocities at the edge of the Stokes boundary layers and the velocities in the bulk, for
the (1, 0) and (0, 1) modes; in fact we are plotting the real quantities Ω0U0, Ω0V0 and
Ω0W0. Notice that the tangential velocities at the edge of the Stokes boundary layers
(which control viscous dissipation there) are small compared to the gradients of the
velocities in the bulk.
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(m, q) ω0 ω1 ω2 ω̃2 ω̃∗2 ω C1/2ω1 × 103 δ × 103 δ̃ × 103 δ̃∗ × 103

(1, 0) 0.943 1.813 17.71 8.22 8.58 0.928 15.1 16.3 15.67 15.69
(0, 1) 1.851 1.657 41.74 34.32 34.32 1.837 13.8 16.7 16.18 16.18

Table 2. As in table 1 but with Λ = 0.2.

This paper Experiment Approximation by H & M

(m, q) f0 f ∆ ∆E/∆ fE ∆E f0 f ∆ ∆E/∆

(1, 0) 4.68 4.67 1.37 1.02 4.65 1.4 4.68 4.66 1.13 1.2
(2, 0) 6.35 6.34 1.75 1.03 6.32 1.8 6.35 6.32 1.24 1.4
(0, 1) 6.85 6.85 0.95 1.26 6.84 1.2 6.75 6.73 0.44 2.7
(3, 0) 7.84 7.82 2.11 1.04 7.80 2.2 7.84 7.79 1.29 1.7
(1, 1) 8.60 8.59 1.45 1.03 8.57 1.5 8.60 8.57 0.48 3.1
(4, 0) 9.30 9.27 2.47 0.97 9.26 2.4 9.30 9.24 1.32 1.8

Table 3. Comparison with Henderson & Miles (1994) (H & M) experiments and theoretical
predictions for the modes considered in table 1; f is the dimensional frequency (in c.p.s.) and ∆ is
a non-dimensional damping rate (with the non-dimensionalization by H & M).

(c) The ratio ω2/ω1 increases as the order of the mode increases, as anticipated at
the end of § 2.

(d) As a consequence of (b) the leading-order approximation of the damping rate is
quite poor. This can no longer be true when the slenderness is significantly decreased
(for fixed values of B and C , and a fixed mode), as explained in § 2. In order to
illustrate this statement we consider the case Λ = 0.2 in table 2.

(e) The approximations δ̃ and δ̃∗ are quite good, for the values of the parameters
considered (and for some others we have checked) as anticipated in § 2. But these
approximations could not be so good for other values of the parameters, specially for
small Λ and not-so-small values of C . This is illustrated in table 2 where we see that
ω̃2 and ω̃∗2 do not approximate ω2 well. Since C is quite small in this table, δ̃ and δ̃∗

provide reasonably good approximations of δ, but the approximations worsen as C
increases; for instance, if C = 10−3 then δ̃ and δ̃∗ are only within 15% of δ for the
(0, 1) mode.

In order to compare with the experiments by Henderson & Miles (1994) we must
consider the dimensional frequency

f = (g/R)1/2(ω/2π) c.p.s. (3.4)

Also, they used a different non-dimensional damping rate ∆, which is related to ours
by

∆ = 2[gR/(πνf0)]
1/2δ, (3.5)

where f0 is their calculated value of the dimensional inviscid frequency, which is
tabulated in column 8 of table 3. Their experiment was made with pure water
(density ρ = 1 g cm−3, surface tension σ = 72.4 dyn cm−1 and kinematic viscosity
ν = 0.01 cm2s−1) in a brimful cylindrical container of radius R = 2.766 cm and
depth d = 3.80 cm, which give the values of Λ, B and C considered above. As we
see in table 3, there is a discrepancy between our calculated value of the inviscid
frequency f0 of the (0, 1) mode and that calculated by Henderson & Miles (1994);
since, as explained in the Appendix, our solution to the O(1) problem is identical to
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theirs, the discrepancy is seemingly due to a material mistake in the computations.
Consequently, there is also a significant discrepancy in the viscous approximation of
the eigenfrequency for that mode; the slight discrepancy for the remaining modes is
due to the fact that they approximated the eigenfrequency as f = f0− γE , where γE is
the measured dimensional damping rate in c.p.s. Notice that the approximation of the
damping rate in this paper is quite good (errors are seemingly within the experimental
accuracy) except for the (0, 1) mode, which is only within 26% of the measured value.
After checking repeatedly our calculations we think that the discrepancy is due to
the neglected O(C3/2) terms. We have checked that the discrepancy is not due to
(the leading-order approximation of) viscous dissipation in the oscillatory boundary
layer attached to the interface, the only physical effect that was neglected in our
approximation. Thus the discrepancy should be due to a higher-order approximation
of effects already considered. This could appear as unlikely at first sight, if it is
assumed that the relative error of our approximation of each physical effect is of the
order of C1/2 ∼ 10−2; but, as explained at the end of § 2 (remark (d)), the relative
error is really of the order of (CB/|Ω0|)1/2 ∼ 10−1. Notice that this error decreases
as |Ω0| increases and thus our approximation should be increasingly good for higher-
order modes; but, unfortunately, we do not have experimental results at hand for
comparison.

4. Concluding remarks
The asymptotic approximations of the eigenfrequency and damping rate derived

above apply as C → 0 provided that the restrictions (2.31), (2.33) and (2.35) hold. Our
results explain why the already-known two-term approximation of the eigenfrequency
are quite good because the O(C) correction vanishes. We have greatly improved the
current one-term approximation of the damping rate by including a O(C) correction
that essentially includes the effects of viscous damping in the bulk. The approximation
shows a satisfactory agreement with experiments except for the first axisymmetric
mode; for this mode our result is only within 26% of the measured value and this
discrepancy is seemingly due to still higher order terms that have been neglected.

Our results are expected to also compare reasonably well with experiments for other
values of the parameters, provided that C � 1 and the above-mentioned restrictions
hold. Also, the main point in the paper, namely that a second-order approximation
is necessary to calculate the damping rate, is expected to apply to other shapes of the
cross-section of the container (i.e. rectangular cross-sections), and is known to apply
to related surface-wave problems (in e.g. capillary bridges). A precise calculation of
damping rates is in turn essential to construct a quantitatively consistent theory of
weakly-nonlinear waves.

This research was supported by DGICYT (Grant PB-94-0416), NATO (Grant
CGR-97-0032) and NASA (Grant UGS97-0308). We are indebted to the Editor and
the anonymous referees for useful comments.

Appendix
We give here several groups of algebraic expressions that were omitted in § 2, to

facilitate the reading of that section. The first group deals with the solution in the
oscillatory boundary layers. The velocity components in the Stokes boundary layer
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near r = 1 are readily found to be as given by

U(ξ, z) =C1/2U0r(1, z)
[
ξ + (1− Γ (ξ))/Ω

1/2
0

]
+ O(C), (A 1)

V (ξ, z) =
[
V0(1, z) + C1/2V1(1, z)

]
[1− Γ (ξ)]

+ C1/2V0(1, z)
[
(1− Ω1/Ω

1/2
0 )ξΓ (ξ)/2 + ξ

]
+ O(C), (A 2)

W (ξ, z) =
[
W0(1, z) + C1/2W1(1, z)

]
[1− Γ (ξ)]

+ C1/2W0(1, z)(1− Ω1/Ω
1/2
0 )ξΓ (ξ)/2 + O(C). (A 3)

Here, for j = 0 and 1, Uj , Vj and Wj are the velocity components at O(1) and O(C1/2)
in the bulk, and the stretched variable ξ and the function Γ are

ξ = (r − 1)/C1/2, Γ (ξ) = exp(Ω
1/2
0 ξ). (A 4)

Similarly, the velocity components in the Stokes boundary layer near z = −Λ are

U(r, η) =[U0(r,−Λ) + C1/2U1(r,−Λ)][1− Γ (−η)]

+ C1/2Ω1U0(r,−Λ)ηΓ (−η)/2Ω
1/2
0 + O(C), (A 5)

V (r, η) =[V0(r,−Λ) + C1/2V1(r,−Λ)][1− Γ (−η)]

+ C1/2Ω1V0(r,−Λ)ηΓ (−η)/2Ω
1/2
0 + O(C), (A 6)

W (r, η) =C1/2W0z(r,−Λ)[η − (1− Γ (−η))/Ω
1/2
0 ] + O(C), (A 7)

where the function Γ is as defined in (A 4) and the stretched variable η is

eta = (z + Λ)/C1/2. (A 8)

Finally, the velocity components and the pressure in the interface boundary layer are

U(r, ζ) = U0(r, 0) + O(C1/2), V (r, ζ) = V0(r, 0) + O(C1/2), (A 9)

W (r, ζ) =Ω0F0 + C1/2[Ω0F1 + Ω1F0 + ζW0z(r, 0)] + O(C), (A 10)

P (r, ζ) = F0 − B−1(F ′′0 + r−1F ′0 − m2r−2F0)

+ C1/2[F1 − B−1(F ′′1 + r−1F ′1 − m2r−2F1) + ζP0z(r, 0)] + O(C), (A 11)

in terms of the stretched variable

ζ = z/C1/2. (A 12)

In the second group of expressions we give the solution of the (inviscid) linear
eigenvalue problem (2.12)–(2.15). That problem has a non-trivial solution if, and only
if, the following characteristic equation holds:

a0 +

∞∑
n=1

an/(1 + λ2
n/B) = 1, (A 13)

where λ1, λ2, . . . , are the strictly positive roots of

J ′m(λn) = 0, (A 14)
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and the coefficient an is given by

a0 = −2I ′0(B
1/2)/[B1/2I0(B

1/2)] if m = 0, a0 = 0 if m > 1, (A 15a)

an = 2Ω2
0λ

2
nI
′
m(B1/2)/[B1/2Im(B1/2)(m2 − λ2

n)(Ω
2
0 + λn(1 + λ2

n/B) tanh(λnΛ))] if n > 1.

(A 15b)

Here Jm and Im are the mth Bessel and modified Bessel functions respectively. All
solutions of (A 13) are seen to be such that Ω2

0 < 0 (i.e. Ω0 is purely imaginary). When
(A 13) holds, the shape of the interface F0 and the pressure P0 are given (up to an
arbitrary non-zero complex factor) by

F0 =Im(B1/2r)/Im(B1/2) + a0 +

∞∑
n=1

anJm(λnr)/[(1 + λ2
n/B)Jm(λn)], (A 16)

P0 =a0 +

∞∑
n=1

anJm(λnr) cosh(λn(z + Λ))/[Jm(λn) cosh(λnΛ)]. (A 17)

The velocity components U0, V0 and W0 are readily obtained from (A 17) and the
momentum conservation equations in (2.12). This semi-analytical solution coincides
with that given by Henderson & Miles (1994) except for notation. Our solution is
equivalent (as seen after several manipulations) to that obtained by Graham-Eagle
(1983) for the axisymmetric case in deep containers (Λ → ∞); the main difference
is that his solution converges much slower than that by Henderson & Miles (1994),
and than that above. Let us point out here that a similar fast convergent solution
was obtained by Sanz (1985) for a related inviscid problem in the liquid bridge
geometry.

In the third group of expressions we give the solutions to the first-order problem
(2.16)–(2.21). The shape of the interface F1 and the pressure P1 are given by

F1 = KF0 + [rF0r − 2F0 + (Λ− 1)F0Λ]/Ω
1/2
0

+

∞∑
n=1

[B(bn + 2cn)(B + λ2
n) + 2B2an]Jm(λnr)/[Ω

1/2
0 (B + λ2

n)
2Jm(λn)], (A 18)

P1 = KP0 + [rP0r + zP0z + (λ− 1)P0Λ]/Ω
1/2
0

+

∞∑
n=1

bnJm(λnr) cosh[λn(z + Λ)]/[Ω
1/2
0 Jm(λn) cosh(λnΛ)], (A 19)

where K is an arbitrary constant, the subscripts r, z and Λ stand for partial derivatives
as above, and the coefficients an, bn and cn are given by (A 15) and

[Ω2
0 + λn(1 + λ2

n/B) tanh(λnΛ)]bn

= Ω2
0[3 + 2(Λ− 1)Ω0Λ/Ω0 − 2Ω1/Ω

1/2
0 − 2B/(B + λ2

n)][an + cn(1 + λ2
n/B)], (A 20)

cn = 2B1/2λ2
nI
′
m(B1/2)/[Im(B1/2)(λ2

n + B)(λ2
n − m2)], (A 21)

if n > 1. The velocity components U1, V1 and W1 are readily calculated from
(2.17) and (A 19). Let us point out here that when (A 18)–(A 19) are substituted
into (2.28) to calculate Ω2, then the resulting value of Ω2 is independent of the
arbitrary constant K appearing in (A 18)–(A 19) (as readily seen and required for

self-consistency). Also, if K = 0 then F1/Ω
1/2
0 and P1/Ω

1/2
0 are real (recall that P0,
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F0, an and Ω1/Ω
1/2
0 are real, and Ω0 is purely imaginary). In order to obtain (A 18)–

(A 19) we only need to eliminate U1, V1 and W1 from (2.16)–(2.21) to obtain a linear
problem in P1 and F1, and then to rewrite the problem in terms of the new variables

F∗ = F1− [rF0r−2F0 +(Λ−1)F0Λ]/Ω
1/2
0 and P ∗ = P1− [rP0r+zP0z +(Λ−1)P0Λ]/Ω

1/2
0 .

The new problem satisfies the same equation in the bulk and exhibits non-zero
boundary conditions only at the interface z = 0, and is readily solved in a semi-
analytical form.

In the fourth group of expressions we give the integrals appearing in (2.27), (2.29a)
and (2.29b) in closed-form as

2

∫ 1

0

F0(r)P0(r, 0)rdr = −Ω2
0

∞∑
n=0

(λ2
n − m2)λ−1

n a
2
n tanh(λnΛ), (A 22)

∫ 0

−Λ
P0(1, z)

2dz =

∞∑
k,n=0

akan
λk tanh(λkΛ)− λn tanh(λnΛ)

(λ2
k − λ2

n)
, (A 23)

∫ 0

−Λ
P0z(1, z)

2dz =

∞∑
k,n=0

akanλkλn
λk tanh(λnΛ)− λn tanh(λkΛ)

(λ2
k − λ2

n)
, (A 24)

2

∫ 1

0

(rP 2
0r + m2P 2

0 /r)z=−Λdr = Ω4
0

∞∑
n=0

(λ2
n − m2)a2

n/ cosh2(λnΛ), (A 25)

2

∫ 1

0

(rF ′0P0r + m2r−1F0P0)z=0dr = −Ω2
0

∞∑
n=0

(λ2
n − m2)λna

2
n tanh(λnΛ). (A 26)
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